Publications
Export 67 results:
Filters: Author is David Rotermund [Clear All Filters]
Back-propagation learning in deep spike-by-spike networks. frontiers in Computational Neuroscience 13, (2019).
fncom-13-00055 (1).pdf (3.31 MB)

Biologically plausible learning in a deep recurrent spiking network. BioRxiv (2019). doi:https://doi.org/10.1101/613471
Biologically.pdf (6.01 MB)

Open Hardware for neuro-prosthesis research: A study about a closed-loop multi-channel system for electrical surface stimulations and measurements. HardwareX 6 (2019) e00078, (2019).
HardwareX.pdf (135.71 KB)

Attention selectively gates afferent signal transmission to area V4. The Journal of Neuroscience 38 (14), 3441-3452 (2018).
JournalofNeurosci_2018.pdf (1.89 MB)

Massively parallel FPGA hardware for spike-by-spike networks. BioRxiv (2018). doi:https://doi.org/10.1101/500280
500280.fullMassively.pdf (1.76 MB)

Generative models of visual cortex with short and long range horizontal interactions. Bernstein Conference 2017 (2017).
BCCN_2017_Capparelli.pdf (48.4 KB)

Implications for a wireless, external device system to study electrocorticography. sensors 17, (2017).
sensors-Rotermund-1.pdf (1.45 MB)
. 
Open hardware for neuro-prosthesis research: A study about a closed-loop multi-channel system for electrical surface stimulations and measurements. ArXiv: http://biorxiv.org/content/early/2017/05/23/141184 (2017). doi:https://doi.org/10.1101/141184
141184.full_.pdf (7.1 MB)

Ongoing activity in a spiking network of visual cortical columns representing local optimal inference modules. Bernstein Conference 2016 (BCCN Berlin, 2016).
abstract_capparelli_BCCN2016.pdf (508.3 KB)

Open Hardware: Towards a Fully-Wireless Sub-Cranial Neuro-Implant for Measuring Electrocorticography Signals. BioRxiv (2016). doi:10.1101/036855
Rotermund_2016.pdf (1.55 MB)

Attention selectively gates afferent signal transmission to area V4. bioRxiv (2015). doi:10.1101/019547
Grothe_2015.pdf (1.19 MB)

Marginally subcritical dynamics explain enhanced stimulus discriminability under attention. Front Syst Neurosci. 2014 Aug 25 8, Article 151, (2014).
toemen_frontiers_2014-1.pdf (1.85 MB)

Marginally subcritical dynamics explain enhanced stimulus discriminability under attention. 10th Bernstein Conference 2014, Frontiers (2014). doi:10.12751/nncn.bc2014.0036
Attention improves information processing. Göttingen Meeting of the German Neuroscience Society 2013 T26-5B (2013).
Attention improves information processing by tuning cortical networks towards critical states. Göttingen Meeting of the German Neuroscience Society 2013 T26-5B (2013).
Improved information processing under attention is explained by phase transitions in cortical dynamics. Brainmodes 2013 (2013).
The neuronal input channel switched by attention reflects routing by coherence. COSYNE 2013 III-2 (2013).
Selective synchronization explains transfer characteristics of attention-dependent routing for broad-band flicker signals to monkey area V4. ECVP 2013 163 (2013).
Toward high performance, weakly invasive Brain Computer Interfaces using selective visual attention. The Journal of Neuroscience 33(14), 6001-6011 (2013).
JournalOfNeuroscience.pdf (3.25 MB)

Towards a Wireless and fully-implantable ECoG System. Transducers - The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (2013).
A wireless and fully implantable recording system for ECoG signals. Göttingen Neurobiologentagung 2013 T27-2A (2013).
Interareal gamma-band synchronization in primate ventral visual pathway underlies signal routing during selective attention. Neuroscience 913.18/CCC65 (2012).
A wireless and fully implantable recording system for ECoG signals. Bernstein Conference 2012 231 (2012).
A wireless and fully implantable recording system for ECoG signals. Neuroscience 322.01 (2012).
Compressed Sensing with Stochastic Spikes. 20th Annual Computational Neuroscience Meeting CNS (2011) 12(Suppl 1):P251, (2011).
2011_rotermund_cns.pdf (204.72 KB)

Gating of visual processing by selective attention as observed in LFP data of monkey area V4. SfN International Neuroscience Meeting 2011 221.05 (2011).
2011_rotermund_sfn.pdf (21.92 KB)

Gating Of Visual Processing By Selective Attention As Observed In LFP Data Of Monkey Area V4. 9th Goettingen Meeting of the German Neuroscience Society / 33nd Goettingen Neurobiology Conference T24-3B (2011).
2011_rotermund_goe.pdf (59.93 KB)

High-performance classification of contour percepts from EEG recordings. 20th Annual Computational Neuroscience Meeting CNS 12(Suppl 1):P94, (2011).
2011_rotermund_bmc.pdf (400.54 KB)

Routing of information flow by selective visual attention in LFPs of monkey area V4. Computational Neuroscience & Neurotechnology Bernstein Conference & Neurex Annual Meeting (2011). doi:10.3389/conf.fncom.2011.53.00055
2011_rotermund_bccn.pdf (62.9 KB)

Discriminability of direction of attention with and without stimuli based on V4 epidural recordings: A perspective for high-performance brain-computer interfaces. SfN International Neuroscience Meeting 2010 631.3 (2010).
2010_ernst_sfn.pdf (28.76 KB)

Highly selective processing of temporal information from attended stimuli in macaque’s visual area V4. Bernstein Conference on Computational Neuroscience (2010). doi:doi: 10.3389/conf.fncom.2010.51.00103
2010_neitzel_bccn.pdf (73.68 KB)

Attention Improves Object Representation in Visual Cortical Field Potentials. Journal of Neuroscience 29 (32), 10120–10130 (2009).
2009_rotermund_jneurosci.pdf (1.37 MB)

Decoding perceptual states of ambiguous motion from high gamma EEG. Bernstein Conference on Computational Neuroscience (BCCN2009) (2009). doi:doi: 10.3389/conf.neuro.10.2009.14.102
2009_schmiedt_bccn.pdf (59.44 KB)

Enhancing information processing by synchronization. Bernstein Conference on Computational Neuroscience (BCCN2009) (2009). doi:10.3389/conf.neuro.10.2009.14.043
2009_rotermund_bmc_B.pdf (220.31 KB)

Enhancing information processing by synchronization. 18th Annual Computational Neuroscience Meeting (CNS 2009) 10(Suppl 1):P268, (2009).
2009_rotermund_bmc.pdf (220.31 KB)

Enhancing information processing by synchronization. SfN International Neuroscience Meeting 2009 758.24 (2009).
2009_ernst_sfn.pdf (24.84 KB)

Field potentials from macaque area V4 predict attention in single trials with 100%. Bernstein Conference on Computational Neuroscience (BCCN2009) (2009). doi:10.3389/conf.neuro.10.2009.14.068
2009_rotermund_bccn.pdf (65.11 KB)

High EEG-gamma-power codes perceptual states of ambiguous motion. 18th Annual Computational Neuroscience Meeting (CNS 2009) 10(Suppl 1): P72, (2009).
2009_schmiedt_bmc.pdf (136.34 KB)

Phase differences in local field potentials from macaque monkey area V4 predict attentional state in single trials with 99.6% accuracy. Berlin Brain Computer Interface (BBCI) 2009 - Advances in Neurotechnology (2009).
Phase differences in local field potentials from macaque monkey area V4, predict attentional state in single trials with 99.6% accuracy. German-Japanese workshop 2009 (2009).
Phase differences in local field potentials from macaque monkey area V4 predict attentional state in single trials with 99.6% accuracy. 8th Goettingen Meeting of the German Neuroscience Society / 32nd Goettingen Neurobiology Conference T26-13A (2009).
2009_rotermund_goe.pdf (23.68 KB)

Phase differences in local field potentials from macaque monkey area V4 predict attentional state in single trials with 99.6% accuracy. 18th Annual Computational Neuroscience Meeting (CNS 2009) 10 (Suppl 1): P230, (2009).
2009_rotermund_bmc_A.pdf (135.56 KB)

Phase differences in local field potentials from macaque monkey area V4 predict attentional state in single trials with 99.6% accuracy. SfN International Neuroscience Meeting 2008 590.20 (2008).
2008_pawelzik_sfn.pdf (72.85 KB)

Attention improves object representation in monkey area V4. Goettingen Neurobiology Conference T32-1A (2007).
2007_rotermund_goe.pdf (10.13 KB)

Attention in monkey area V4 is modulated by task demand. SfN International Neuroscience Meeting 2007 176.1 (2007).
2007_rotermund_sfn.pdf (59.1 KB)

Efficient computation based on stochastic spikes. Neural Computation 19 (5), 243-257 (2007).
2007_ernst_neurcomp.pdf (872.83 KB)

Attention improves object discriminability in monkey area V4. CNS - Computational Neuroscience Conference S2 (2006).
2006_rotermund_cns.pdf (249.37 KB)

FENS 2006 9915010554 (2006).
On-line adaptation of neuro-prostheses with neuronal evaluation signals. Proceedings ESANN’06 53–62 (d-side, Evere, Belgium, 2006).
2006_pawelzik_esann.pdf (315.99 KB)

Towards on-line adaptation of neuro-prostheses with neuronal evaluation signals. SfN International Neuroscience Meeting 2006 13.13 (2006).
Towards on-line adaptation of neuro-prosthesis with neuronal evaluation signals. Biological Cybernetics 95 (3), 243–257 (2006).
2006_rotermund_biolcyb.pdf (331.47 KB)

Attention improves object encoding in monkey area V4. SfN International Neuroscience Meeting 2005 591.6 (2005).
Processing natural images with single spikes. Proceedings of the 30th Göttingen Neurobiology Conference 445A (2005).
2005_rotermund_goe.pdf (233.62 KB)

An algorithm for fast pattern recognition with random spikes. 26th DAGM Symposium Pattern Recognition (Lecture Notes in Computer Science 3175), 399–406 (Springer-Verlag Berlin/Heidelberg, 2004).
2004_ernst_lncs.pdf (244.59 KB)

Computing spike-by-spike. Dynamic Perception Workshop 145–150 (IOS Press, 2004).
A novel framework for universal adaptive computation in a cortex model with stochastic spikes. 4th Forum of European Neuroscience (FENS) 142.1 (2004).
Binary tuning is optimal for neural rate coding with high temporal resolution. Advances in Neural Information Processing Systems 15 15, 189-196 (2003).
NIPS-2002-Bethge.pdf (105.92 KB)

Building representations spike by spike. Neural Information and Coding Workshop (2003).
2003_pawelzik_snowbird.pdf (44.49 KB)

Building representations spike by spike. Proceedings of the 29th Göttingen Neurobiology Conference 1041 (2003).
2003_pawelzik_goe.pdf (9.83 KB)

Optimal neural rate coding leads to bimodal firing rate distributions. Network: Comput. Neural Syst. 14, 303–319 (2003).
Network_2003_Bethge.pdf (438.02 KB)

A second order phase transition in neural rate coding: Binary encoding is optimal for rapid signal transmission. Phys. Rev. Lett. 90 (8), 088104-1 (2003).
PRL_2003_Bethge.pdf (106.63 KB)

Building representations spike by spike. Society of Neuroscience Conference 2002 557.12 (2002).
2002_pawelzik_sfn.pdf (6.83 KB)

Verhandlungen der Deutschen Physikalischen Gesellschaft ( ) DPG (VI) 37, 1, 509 (Physik-Verlag GmbH, 2002).
Optimal short-term population coding: When Fisher information fails. Neural Computation 14(10), 2317–2351 (2002).
NeuralComp_2002_Bethge.pdf (115 bytes)

Proceedings of the 28th Göttingen Neurobiology Conference ( ) 250 (Georg Thieme Verlag, Stuttgart, 2001).